Spatial–Temporal Recurrent Neural Network for Emotion Recognition
نویسندگان
چکیده
منابع مشابه
Spatial-Temporal Recurrent Neural Network for Emotion Recognition
Emotion analysis is a crucial problem to endow artifact machines with real intelligence in many large potential applications. As external appearances of human emotions, electroencephalogram (EEG) signals and video face signals are widely used to track and analyze human’s affective information. According to their common characteristics of spatial-temporal volumes, in this paper we propose a nove...
متن کاملStochastic Recurrent Neural Network for Speech Recognition
This paper presents a new stochastic learning approach to construct a latent variable model for recurrent neural network (RNN) based speech recognition. A hybrid generative and discriminative stochastic network is implemented to build a deep classification model. In the implementation, we conduct stochastic modeling for hidden states of recurrent neural network based on the variational auto-enc...
متن کاملStacked Convolutional and Recurrent Neural Networks for Music Emotion Recognition
This paper studies the emotion recognition from musical tracks in the 2-dimensional valence-arousal (V-A) emotional space. We propose a method based on convolutional (CNN) and recurrent neural networks (RNN), having significantly fewer parameters compared with state-of-theart method for the same task. We utilize one CNN layer followed by two branches of RNNs trained separately for arousal and v...
متن کاملHigh-level feature representation using recurrent neural network for speech emotion recognition
This paper presents a speech emotion recognition system using a recurrent neural network (RNN) model trained by an efficient learning algorithm. The proposed system takes into account the long-range contextual effect and the uncertainty of emotional label expressions. To extract high-level representation of emotional states with regard to its temporal dynamics, a powerful learning method with a...
متن کاملA Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Cybernetics
سال: 2019
ISSN: 2168-2267,2168-2275
DOI: 10.1109/tcyb.2017.2788081